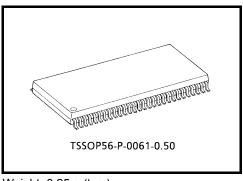
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC74VCX16827FT

Low-Voltage 20-Bit Bus Buffer with 3.6-V Tolerant Inputs and Outputs

The TC74VCX16827FT is a high-performance CMOS 20-bit bus buffer. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to $3.6\ V.$

The TC74VCX16827FT is composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1\overline{OE}1$ and $1\overline{OE}2$ or $2\overline{OE}1$ and $2\overline{OE}2$) inputs must both be low for the corresponding Y outputs to be active. When the \overline{OE} input is high, the outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

Weight: 0.25 g (typ.)

All inputs are equipped with protection circuits against static discharge.

Features

- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation: $t_{pd} = 2.5 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V)}$

: $t_{pd} = 3.0 \text{ ns (max) (V}_{CC} = 2.3 \text{ to } 2.7 \text{ V})$

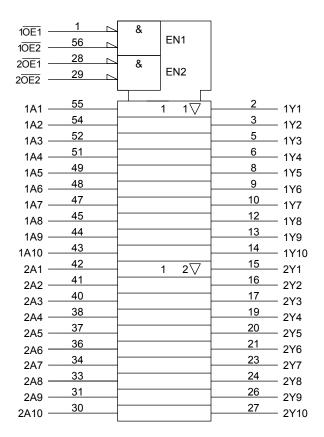
 $t_{pd} = 6.0 \text{ ns (max) (V}_{CC} = 1.8 \text{ V})$

• Output current: $I_{OH}/I_{OL} = \pm 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$

 $: I_{OH}/I_{OL} = \pm 18 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$

: $I_{OH}/I_{OL} = \pm 6$ mA (min) ($V_{CC} = 1.8$ V)

- Latch-up performance: ±300 mA
- ESD performance: Machine model > ±200 V

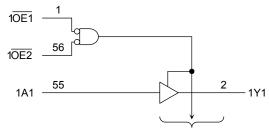

: Human body model $> \pm 2000 \text{ V}$

- Package: TSSOP (thin shrink small outline package)
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

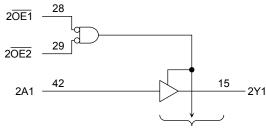
Pin Assignment (top view)

10E2 56 10E1 1Y1 2 55 1A1 1Y2 3 54 1A2 GND 4 **GND** 53 5 1Y3 52 1A3 1Y4 6 51 1A4 V_{CC} 7 50 V_{CC} 1Y5 8 49 1A5 1Y6 9 48 1A6 1Y7 10 47 1A7 GND 11 46 **GND** 1Y8 12 45 1A8 1Y9 13 1A9 1Y10 14 43 1A10 2Y1 15 2A1 42 2Y2 16 41 2A2 2Y3 17 40 2A3 GND 18 **GND** 39 2Y4 19 38 2A4 2Y5 20 37 2A5 2Y6 21 36 2A6 V_{CC} 22 35 V_{CC} 2Y7 23 34 2A7 2Y8 24 33 2A8 GND 25 **GND** 32 2Y9 26 2A9 31 2Y10 27 30 2A10 2OE1 28 2OE2 29

IEC Logic Symbol


Truth Table (each 10-bit latch)

	Input		Output
ŌE1	OE2	A	Y
L	Ĺ	L	L
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z


X: Don't care

Z: High impedance

System Diagram

To nine other channels

3

To nine other channels

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	٧
		-0.5 to 4.6 (Note 2)	
DC output voltage	V _{OUT}	-0.5 to V_{CC} + 0.5	V
		(Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	lok	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	P_{D}	400	mW
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Range (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.8 to 3.6	V	
Tower suppry voitage	VCC	1.2 to 3.6 (Note 2)	V	
Input voltage	V _{IN}	-0.3 to 3.6	V	
Output voltage	V _{OUT}	0 to 3.6 (Note 3)	V	
Output voltage	VOUT	0 to V _{CC} (Note 4)	v	
		±24 (Note 5)		
Output current	I _{OH} /I _{OL}	±18 (Note 6)	mA	
		±6 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

Note 1: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

4

Note 2: Data retention only

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 7: $V_{CC} = 1.8 \text{ V}$

Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < $V_{\text{CC}} \leq 3.6 \text{ V})$

Characteri	stics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
Innut voltage	H-level	V _{IH}	-	_	2.7 to 3.6	2.0	_	V
Input voltage	L-level	V _{IL}	-	_	2.7 to 3.6	_	0.8	V
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2		
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -12 mA	2.7	2.2	_	
				I _{OH} = -18 mA	3.0	2.4		
Output voltage				I _{OH} = -24 mA	3.0	2.2		V
		V _{OL}	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 100 \ \mu A$	2.7 to 3.6	_	0.2	
	L-level			I _{OL} = 12 mA	2.7	_	0.4	
	L-IEVEI	VOL	VIN - VIH OI VIL	I _{OL} = 18 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55	
Input leakage curre	nt	I _{IN}	$V_{IN} = 0 \text{ to } 3.6 \text{ V}$		2.7 to 3.6	_	±5.0	μΑ
2 state output OFF	atata aurrant	la-	$V_{IN} = V_{IH}$ or V_{IL}		2.7 to 3.6		±10.0	
3-state output OFF state current		loz	$V_{OUT} = 0$ to 3.6 V		2.7 10 3.0	_	±10.0	μА
Power-off leakage of	current	I _{OFF}	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0	_	10.0	μΑ
Quiescent supply current	loo	V _{IN} = V _{CC} or GND		2.7 to 3.6	_	20.0		
Quiescent supply co	<u></u>	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		2.7 to 3.6	_	±20.0	μΑ
Increase in I _{CC} per	input	Δlcc	$V_{IH} = V_{CC} - 0.6 V$ (per	input)	2.7 to 3.6	_	750	

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characte	ristics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit		
	H-level	V _{IH}		_	2.3 to 2.7	1.6	_			
Input voltage	L-level	V _{IL}		_	2.3 to 2.7	_	0.7	V		
				I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2	_			
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -6 mA	2.3	2.0	_			
			V _{OL} V _{IN} = V _{IH} or V _{IL}		I _{OH} = -12 mA	2.3	1.8	_		
Output voltage				I _{OH} = -18 mA	2.3	1.7	_	V		
		I _{OL} = 10		I _{OL} = 100 μA	2.3 to 2.7	_	0.2			
	L-level	V _{OL}		$V_{IN} = V_{IH} \ or \ V_{IL}$	$V_{IN} = V_{IH} \ or \ V_{IL}$	I _{OL} = 12 mA	2.3	_	0.4	
				I _{OL} = 18 mA	2.3	_	0.6			
Input leakage curre	ent	I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μА		
3-state output OFF state current		la-	$V_{IN} = V_{IH}$ or V_{IL}		2.3 to 2.7		. 40.0			
		loz	V _{OUT} = 0 to 3.6 V		2.3 10 2.7	_	±10.0	μΑ		
Power-off leakage	current	loff	V _{IN} , V _{OUT} = 0 to 3.6 V		0		10.0	μА		
Quiescent supply current		loo	V _{IN} = V _{CC} or GND		2.3 to 2.7		20.0	μА		
		Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le$	3.6 V	2.3 to 2.7	_	±20.0	μΑ		

DC Characteristics (Ta = -40 to 85° C, $1.8 \text{ V} \le \text{V}_{CC} < 2.3 \text{ V}$)

Characteris	stics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
Input voltage	H-level	V _{IH}	_	_	1.8 to 2.3	0.7 × V _{CC}		V
input voitage	L-level	V _{IL}	_	_	1.8 to 2.3		0.2 × V _{CC}	V
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2		V
Output voltage				$I_{OH} = -6 \text{ mA}$	1.8	1.4		
	L-level	.,	V_{OL} $V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	1.8		0.2	
	L-level	VOL		I _{OL} = 6 mA	1.8	_	0.3	
Input leakage currer	nt	I _{IN}	V _{IN} = 0 to 3.6 V		1.8		±5.0	μΑ
3-state output OFF	state output OFF state current I_{OZ} $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		1.8		±10.0	μА		
Power-off leakage c	urrent	l _{OFF}	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0		10.0	μΑ
Quiescent supply cu	Ouissant summir summer		V _{IN} = V _{CC} or GND		1.8	_	20.0	μА
Quiescent supply co	IIIGIIL	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		1.8	_	±20.0	μΑ

AC Characteristics (Ta = -40 to 85°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500$ Ω) (Note 1)

Characteristics	Symbol	Test Condition	., .,	Min	Max	Unit
			V _{CC} (V)			
	t _{pLH}		1.8	1.5	6.0	
Propagation delay time	t _{pHL}	Figure 1, Figure 2	2.5 ± 0.2	1.0	3.0	ns
	ΨП		3.3 ± 0.3	0.8	2.5	
	t		1.8	1.5	9.8	
3-state output enable time	t _{pZL} t _{pZH}	Figure 1, Figure 3	2.5 ± 0.2	1.0	4.9	ns
			3.3 ± 0.3	0.8	3.8	
	4		1.8	1.5	7.6	
3-state output disable time	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	2.5 ± 0.2	1.0	4.2	ns
			3.3 ± 0.3	8.0	3.7	
Output to output skew	t _{osLH}		1.8	_	0.5	
		(Note 2)	2.5 ± 0.2	_	0.5	ns
	tosHL		3.3 ± 0.3		0.5	

6

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, \, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

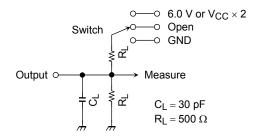
Dynamic Switching Characteristics

(Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not		0.25	
Quiet output maximum dynamic VOI	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	2.5	0.6	V
aynamic tol		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	9) 3.3	0.8	
	02.	$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	9) 1.8	-0.25	V
Quiet output minimum dynamic V _{OI}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	2.5	-0.6	
, 01		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	3.3	-0.8	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	1.8	1.5	
Quiet output minimum dynamic V _{OH}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	2.5	1.9	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	9) 3.3	2.2	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Symbol Test Condition			Tun	Unit
Cital acteristics	Symbol	rest condition	Vcc) (V)	Тур.	Offic
Input capacitance	C _{IN}	_	1.8, 2	.5, 3.3	6	pF
Output capacitance	C _{OUT}	_	1.8, 2	.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (No	e) 1.8, 2	.5, 3.3	20	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/20 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	6.0 V V _{CC} × 2	$@V_{CC} = 3.3 \pm 0.3 \text{ V} \\ @V_{CC} = 2.5 \pm 0.2 \text{ V} \\ @V_{CC} = 1.8 \text{ V} \\ \\$	
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

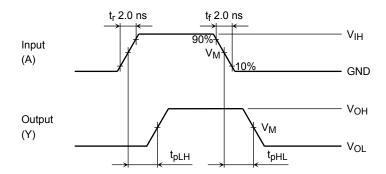
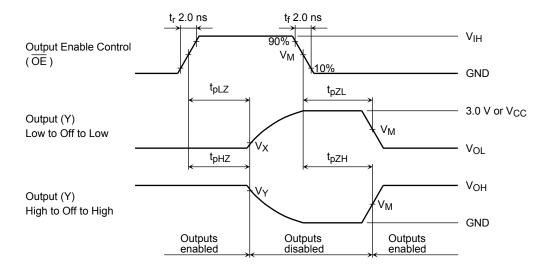
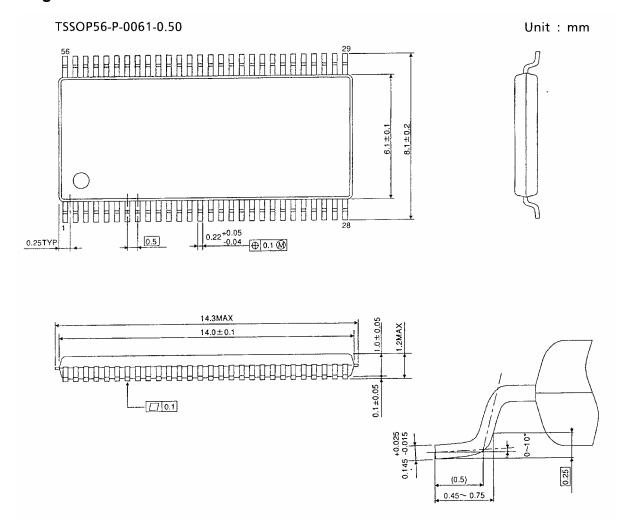


Figure 2 t_{pLH}, t_{pHL}

8




Figure 3 $\;t_{\text{pLZ}},\,t_{\text{pHZ}},\,t_{\text{pZL}},\,t_{\text{pZH}}$

Symbol	V _{CC}						
Symbol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V				
V_{IH}	2.7 V	V _{CC}	V _{CC}				
V _M	1.5 V	V _{CC} /2	V _{CC} /2				
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V				
V _Y	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V				

9 2006-02-01

Package Dimensions

TOSHIBA

Weight: 0.25 g (typ.)

Note: Lead (Pb)-Free Packages

TSSOP56-P-0061-0.50

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.